Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(24): 4445-4460.e7, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37995689

RESUMO

The metazoan-specific Integrator complex catalyzes 3' end processing of small nuclear RNAs (snRNAs) and premature termination that attenuates the transcription of many protein-coding genes. Integrator has RNA endonuclease and protein phosphatase activities, but it remains unclear if both are required for complex function. Here, we show IntS6 (Integrator subunit 6) over-expression blocks Integrator function at a subset of Drosophila protein-coding genes, although having no effect on snRNAs or attenuation of other loci. Over-expressed IntS6 titrates protein phosphatase 2A (PP2A) subunits, thereby only affecting gene loci where phosphatase activity is necessary for Integrator function. IntS6 functions analogous to a PP2A regulatory B subunit as over-expression of canonical B subunits, which do not bind Integrator, is also sufficient to inhibit Integrator activity. These results show that the phosphatase module is critical at only a subset of Integrator-regulated genes and point to PP2A recruitment as a tunable step that modulates transcription termination efficiency.


Assuntos
Proteínas de Drosophila , Terminação da Transcrição Genética , Animais , RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Nuclear Pequeno/genética , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster
2.
Trends Genet ; 39(12): 897-907, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839990

RESUMO

Numerous circular RNAs (circRNAs) produced from back-splicing of exon(s) have been recently revealed on a genome-wide scale across species. Although generally expressed at a low level, some relatively abundant circRNAs can play regulatory roles in various biological processes, prompting continuous profiling of circRNA in broader conditions. Over the past decade, distinct strategies have been applied in both transcriptome enrichment and bioinformatic tools for detecting and quantifying circRNAs. Understanding the scope and limitations of these strategies is crucial for the subsequent annotation and characterization of circRNAs, especially those with functional potential. Here, we provide an overview of different transcriptome enrichment, deep sequencing and computational approaches for genome-wide circRNA identification, and discuss strategies for accurate quantification and characterization of circRNA.


Assuntos
RNA Circular , RNA , RNA Circular/genética , RNA/genética , Transcriptoma , Biologia Computacional , Genoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...